
EAGRE: Towards Scalable I/O Efficient SPARQL

Query Evaluation on the Cloud

Xiaofei Zhang #1, Lei Chen #2, Yongxin Tong #3 , Min Wang ∗4

#Dept. of Computer Science & Engineering, HKUST

Clear Water Bay, Kowloon, HKSAR

{ 1
zhangxf,

2
leichen,

3
yxtong}@cse.ust.hk

∗HP Labs China

Beijing, China
4
min.wang6@hp.com

Abstract—To benefit from the Cloud platform’s unlimited re-
sources, managing and evaluating huge volume of RDF data in a
scalable manner has attracted intensive research efforts recently.
Progresses have been made on evaluating SPARQL queries with
either high-level declarative programming languages, like Pig
[1], or a sequence of sophisticated designed MapReduce jobs,
both of which tend to answer the query with multiple join
operations. However, due to the simplicity of Cloud storage
and the coarse organization of RDF data in existing solutions,
multiple join operations easily bring significant I/O and network
traffic which can severely degrade the system performance. In
this work, we first propose EAGRE, an Entity-Aware Graph
compREssion technique to form a new representation of RDF
data on Cloud platforms, based on which we propose an I/O effi-
cient strategy to evaluate SPARQL queries as quickly as possible,
especially queries with specified solution sequence modifiers, e.g.,
PROJECTION, ORDER BY, etc. We implement a prototype system
and conduct extensive experiments over both real and synthetic
datasets on an in-house cluster. The experimental results show
that our solution can achieve over an order of magnitude of
time saving for the SPARQL query evaluation compared to the
state-of-art MapReduce-based solutions.

I. INTRODUCTION

As one of the W3C standards for describing web resources

and meta data, RDF (Resource Description Framework) is

designed as a flexible representation of schema-relax or even

schema-free information for the Semantic Web. Along with

increasing supports from prevailing search engine projects,

like RichSnippets from Google and SearchMoney from Ya-

hoo!, as well as the willingness to integrate across-domain

knowledge, there emerges a huge volume of public RDF

data for management and analysis. For example, the largest

RDF dataset (Billion Challenge 2010) available in the Linked

Data community1 has over 3.2 billion triples, and the sec-

ond largest dataset containing various bio- and gene- related

data (Bio2RDF) has over 2.7 billion triples. The increasing

demands of massive data-intensive RDF data analysis and the

great scalability of Cloud platforms have made them the nail

and the hammer. Although various efforts have been made

to explore the effective analysis of large RDF data on Cloud

1http://linkeddata.org/

platforms via RDF-specific querying interface, SPARQL2, the

query time efficiency remains a bottleneck to forward Cloud-

based RDF services in the real world.

As a matter of fact, the huge gap between the simplicity

of RDF data and the complexity of queries and inferences

that people want to perform over the data, raises the essential

challenge of RDF data management and analysis. Most of

the state-of-art centralized systems address the problem by

taking advantages of heavy or even exhaustive indexes or

semantic based data partition to answer RDF queries. For

example, Jena3 introduces property tables obtained through

pattern mining techniques. RDF-3X [2] takes the advantage

of extensive set of statistics obtained from data preprocessing.

T. Neumann and et. al. further improve RDF-3X in [3] and

[4] by adopting a different join order selection strategy and in-

troducing side-way information passing to filter out undesired

data as early as possible. However, all the above techniques

rely on effective data preprocessing and the global view of

the entire dataset, which make their solutions hardly scalable

for distributed RDF data of large scale. Although distributed

solutions for RDF query processing and storage have been

proposed such as [5][6][7], these proposals are built upon self-

defined computing policies and specific distributed or parallel

databases, which limit their expandability to conduct the cross-

platform integration and become an open standard.

Although the Cloud platform promises great scalability

and “unlimited” resources, sophisticated scheduling of parallel

jobs for query evaluation remains a challenging problem. The

most recent works, like [8][9][10][11] and [12], basically look

into the same general problem, how to map a query to a

number of MapReduce jobs and how to schedule the jobs to

achieve different optimization goals. However, as shown in the

experiments results in these works, it can easily take hundreds

of seconds to evaluate a query, which makes it impractical to

deliver the RDF query services in the real world. The draw-

backs come from two aspects. First, existing efforts heavily

rely on the simple (key,value) storage format provided by

2http://www.w3.org/TR/sparql11-query/
3http://jena.apache.org/

978-1-4673-4910-9/13/$31.00 © 2013 IEEE ICDE Conference 2013565

most Cloud platforms and totally ignore the inner correlations

existed in the RDF data. For example, RDF tuples sharing

the same Subject are semantically correlated; Subjects sharing

the same set of Predicates (properties) probably belong to the

same category. Second, MapReduce jobs bring inevitable cost

on the disk I/O and shuffling of intermediate results, which is

caused by not knowing the minimum number of data blocks

that contain the valid answer beforehand.

Therefore, to improve the efficiency in answering SPARQL

queries on the Cloud platform, we need to consider the fol-

lowing two factors: First, it is necessary to have RDF data re-

modeled and better organized on the Cloud platform. Specifi-

cally speaking, right above the simple triplets’ format, we need

to store some structure information to have both the semantic

and structure information being taken into account. Second,

care should be taken on starting a number of MapReduce

jobs. As disk I/O and network shuffling have been identified

as the performance bottleneck, it is desirable to reduce the

unnecessary I/O of data blocks as much as possible. In other

words, MapReduce jobs should be fed with the minimum set

of data blocks that contains the valid query answers. Ideally

speaking, no MapReduce job should be initiated if there is a

way we can tell that the query result is empty.

In this paper, we propose a solution which takes the

above two factors into consideration to achieve the goal of

minimizing the I/O cost of block scans and network shuf-

fling, especially for queries with range and order constraints.

Specifically, we first propose EAGRE, an Entity Aware Graph

compREssion technique, to model RDF data on (key,value)

storage in a particular manner to preserve both the semantic

and structure information of RDF data. Based on the EAGRE

model, we adopt the graph partition technique to distribute

RDF data to computing nodes and build in-memory index to

efficiently support range and order sensitive queries. Mean-

while, we identify a distributed I/O scheduling problem to

minimize the disk scan and the total time cost for query

evaluations. To summarize, our contribution are summarized

as follows:

• We introduce a novel RDF representation model in the

(key,value) store to preserve the inner correlation of RDF

data.

• We propose a layout solution for RDF data on the Cloud

platform to efficiently support SPARQL queries with

range and order constraints specified.

• We propose an I/O efficient evaluation strategy for effi-

cient SPARQL query processing in a distributed fashion.

Compared to solutions that have only MapReduce jobs

employed, our strategy significantly reduces the query

processing time.

The rest of paper is structured as follows. For clear il-

lustration purpose, in Section 2 we briefly introduce RDF

and SPARQL query, as well as the main trend of evaluating

SPARQL queries using MapReduce. We give the problem

definition and a solution overview in Section 3 and formally

present the EAGRE model and RDF layout method in Section

4. We elaborate our distributed I/O scheduling algorithm in

Section 5. Experiments on both real and synthetic datasets are

presented in Section 6. We discuss the related work in Section

7 and conclude in Section 8.

II. PRELIMINARY

RDF, known as Resource Description Framework, is origi-

nally defined to describe conceptual procedures and meta data

models. SPARQL is the W3C standard interface to query RDF

data in a SQL-like style. In this section, we first describe

the RDF data model and the current state of the SPARQL

query standard. As our work targets at efficient SPARQL query

evaluation over the Cloud platform, we shall briefly introduce

the essential techniques that have been explored in existing

literature for MapReduce-based SPARQL query processing.

A. RDF data

RDF model can be viewed as a description of the schema-

relax relational model in the finest granularity. Each piece

of RDF data is defined as a Subject-Predicate-Object triplet,

describing the value (Object) of a Subject’ particular property

(Predicate). Fig.1 shows an example of RDF data describing

authors and their publications. By making Subjects and Objects

the nodes, and Predicates the directed edges pointing from the

corresponding Subject to Object, RDF data can be viewed as

a directed labeled graph.4

B. SPARQL Queries

SPARQL is the W3C standard interface for RDF query. It is

designed to query RDF data in a SQL-like style. A SPARQL

query specifies several Basic Query Patterns, a.k.a. BQPs, and

the query returns are in fact the desired labels of subgraph(s)

that exactly matches with given BQPs. Like the example given

in Fig.1, to query the name of an author who has coauthored

with ”Alice” and has a journal published in 1940, a small

subgraph (shown in gray) is identified to be the match of given

BQPs. So far, SPARQL(1.1) allows four types of queries to

be performed:

• SELECT: returns the desired variable value, as the query

example shown in Fig.1.

• CONSTRUCT: returns a subgraph of RDF graph G that

satisfies all the given BQPs. For example, in Fig.1, if we

substitute the “SELECT” keyword with “CONSTRUCT”,

the returned result would be the subgraph covered in the

gray shadow.

• ASK: instead of returning the variable value, it is a

boolean function to indicate that a given variable has a

value or not.

• DESCRIBE: returns all the associated labels and literal

values. Intuitively, it represent some query like “SELECT

?p1 ?o ?s ?p2 WHERE {?x ?p1 ?o. ?s ?p2 ?x}”.

Studies on the real world SPARQL queries [14][15][16] find

that over 99% queries are SELECT queries. Therefore, in this

work we only focus on this type of query. So far, SPARQL

4More rigorously, it is a directed multi-edge labeled graph, as some Subject

may have multiple values of the same Predicate.[13]

566

_author1

_publication1

_publication2
_publication3

Article

Journal

_author2 _author3

“Alice”

“Bob”

“Cindy”

“1940”

“1942”

“Why SPARQL?”

rdf:hasName

rdf:hasName

rdf:hasName

rdf:hasPublication

rdf:hasPublication rdf:hasPublication

rdf:hasTitle

rdf:hasType

rdf:hasType

rdf:year

rdf:year

xml:foaf rdf:coauthor

SELECT ?name WHERE {?x rdf:hasName “Alice” . ?x rdf:coauthor ?y . ?y rdf:hasName ?name .

?y rdf:hasPublication ?z . ?z rdf:hasType journal . ?z rdf:year “1940” }
A SPARQL query:

Answer
“Cindy”

rdf:hasType

“1936”

rdf:year

Subject Predicate Object

_author1 rdf:hasName “Alice”

_author1 rdf:hasPublication _publication1

_publication1 rdf:hasType Journal

_publication1 rdf:year “1942”

_author1 xml:foaf _author2

_author2 rdf:hasName “Bob”

_author2 rdf:hasPublication _publication2

_publication2 rdf:hasType Article

_publication2 rdf:hasTitle “Why SPARQL?”

_publication2 rdf:year “1936”

_author1 rdf:coauthor _author3

_author3 rdf:hasPublication _publication3

_publication3 rdf:hasType Journal

_publication3 rdf:year “1940”

_author3 rdf:hasName “Cindy”

Fig. 1. An illustration example of RDF data and SPARQL query

has evolved to support more advanced functions for flexible

queries and the result representation, as well as some simple

aggregation functions.

C. SPARQL Evaluation Using MapReduce

There have been extensive efforts to evaluate SPARQL

queries over large volumes of RDF data using the MapReduce

paradigm. For the purpose of comparison, we first summarize

the essential ideas of current solutions.

As explained in Fig.1, conceptually the SPARQL query

evaluation can be considered as a subgraph matching problem.

However, to leverage the massive parallelism and scalability

of the MapReduce framework, SPARQL queries are usually

evaluated in a multi-way join fashion. To be specific, con-

sidering the variables as the join-keys, Map tasks first scan

over the dataset to find all the data that satisfy given BQPs,

then shuffle the data of the same join-key to the same Reduce

task to examine all the possible valid join results. The state-

of-art optimization techniques fall into three categories. First,

reducing the volume of file scan. Solutions like “Predicate

split” [9][8] and pre-computed query forwarding [17] try to

evaluate queries only on the computing nodes that hold the

desired data. Shared scan [18] is also widely adopted as an

effective tool to reduce the file scan cost. Second, reducing

the I/O cost of intermediate results with bloom filter [8] and

effective selectivity estimation. By adopting the selectivity

estimation, multiple MapReduce jobs can be organized and

scheduled to achieve the minimum time cost of the query

evaluation. Third, introducing filters or new hash functions

to optimize the performance of MapReduce jobs conducting

the join operation. For example, work [19] studies the optimal

network shuffling function in case of performing multi-way

join with one MapReduce job.

Compared to the existing work, our solution also targets at

reducing unnecessary disk block scans. The novel idea is to

postpone the Map tasks as late as possible until we find the

minimum number of data blocks that contain the query results.

III. PROBLEM DEFINITION AND SOLUTION OVERVIEW

In this work, we target at evaluating SPARQL queries on

the Cloud platform as quickly as possible. According to the

claim made in [15], although most SPARQL queries in the

real practice may have only a few number of BQPs specified,

the OPTIONAL clause and the solution sequence modifier

functions (DISTINCT, ORDER BY, PROJECTION, OFFSET,

LIMIT, REDUCE) are frequently adopted. Surprisingly, there

are very limited efforts towards the optimization of such kinds

of SPARQL queries on the Cloud platform. Therefore, we try

to derive a solution that particularly favours the query with

range and order constraints specified.

As illustrated in the last section, SPARQL queries are

generally processed as multi-way joins using MapReduce jobs.

Since the performance bottleneck of a MapReduce job heavily

lies in the cost of I/O and network traffic, we take the I/O

efficiency as our primary optimization goal. In this section, we

shall first define the I/O efficiency problem for SPARQL query

evaluation, then describe a general picture of our solution

framework.

A. Problem Statement

Intuitively, given a SPARQL query Q, the most I/O efficient

evaluation is performed in the following manner: 1) Only the

data blocks containing the desired query results are involved;

2) No network traffic is introduced. However, the second

condition holds only when the computing node contains all

the data. As a matter of fact, there could be more efficiency

gains if the I/O cost can be amortized to multiple nodes. Like

every coin has two sides, query processing over multiple nodes

bring inevitable network traffic. Therefore, a desired solution

is to trade-off the benefit of distributed I/O and the cost of

network traffic.

Consider the following scenario, query Q is forwarded to k

computing nodes for evaluation. Each computing node i needs

to scan Ni blocks. If we start the Map tasks simultaneously

on all the k nodes, the earliest time point to start the final

Reduce task is dominated by MAX(Ni) (assume there is no

remote read). Plus, the volume of network traffic is at least
∑k−1

0 Map (Ni), where Map (Ni) is the output volume of

the Map tasks on node i. Since there is no heavy computation

during the Map phase, the total CPU and I/O cost for Ni

data blocks can be considered as O(Ni). However, the total

complexity for network traffic is a function of both k and

567

{Map(N0),...,Map(Nk−1)}. Apparently, Ni ≥ Map(Ni),
therefore, we need to minimize MAX(Ni) in the first place.

One way to reduce Ni on computing node i is to first consult

other nodes before initiating the scan. The trick is that by

querying the value range of particular variable on different

computing nodes, it is possible to reduce the search space.

We define such an operation as Consulting.

Definition 1 Consulting is an all-to-all communication to

inform other computation participants the variable’s value

range on each node.

For example, a variable ?x has a value range (1,100) on node

i while ?x has a value range (50,200) on node j, then after

consulting, both node i and j know that it is sufficient to scan

the data blocks having ?x fall in the range of (50,100). Since

the consulting process is an all-to-all conversation among k

nodes and only range information is passed, therefore, it can

be considered as a constant cost factor. Then the problem

becomes a Consulting-based scheduling of distributed I/Os.

Problem Definition: Given a SPARQL query Q, which

is forwarded to k computing nodes where each node has

Ni data blocks to scan at the initial stage. Partition the k

I/O operations into m disjoint stages. The I/O operations

in the same stage are performed simultaneously, while the

entire evaluation is performed stage by stage. Between each

stage a Consulting is performed to reduce the I/O volumes

in the next stage. Let the cost of stage si be denoted

as Cost(si)=MAXNi∈si(Ni). Find a scheduling function F :

{N0, ..., Nk−1} → {{N0...}, ..., {Ni...}, ...{Nj ...}}
︸ ︷︷ ︸

m

, such that

∑m−1
i=0 Cost(si) is minimized.

To elaborate, consider the example shown in Fig.2, query Q
is forwarded to 5 nodes for evaluation. One naive scheduling

function F1 is to conduct the 5 I/O operations in 5 consecutive

stages. At each stage, only the I/O operation of the minimal

volume is performed. For example, originally N2 is the

minimum one, therefore s0 contains N2. After s0 is done,

a consulting process is initiated to reduce the I/O volume on

other computing nodes. Like shown in the example, after s0
N1 is reduced from 4 to 3 and becomes the minimum value,

therefore s1 contains N1. Another scheduling function F2,

however, is more greedier to take the advantage of parallelism.

According to the problem definition, intuitively a smart

scheduling function should minimize the number of stages

as well as the cost of each stage. In practice, the challenge

to address the problem lies in two folds. First, it is non-

trivial to estimate the reduced I/O volume on each node after

a certain stage. Second, to leverage the variable’s value range

intersection for I/O reduction needs an order preserving layout

of RDF data on the Cloud platform. The solution lies in

a novel organization and layout of RDF data on the Cloud

storage and an adaptive I/O scheduling algorithm, which shall

be elaborated in Section 4 and Section 5, respectively. Instead

of directly going into technical details, we shall first briefly

60 N 41 N 32 N 203 N 74 N

}{ 20 Ns 50 N 31 N 63 N 74 N

40 N 53 N 34 N

40 N 53 N

 53 N

40 N 53 N 34 N

}{ 11 Ns

}{ 42 Ns

}{ 03 Ns

}{ 34 Ns

},{ 210 NNs

},,{ 4300 NNNs

18543331 !!!! CostF

9542 ! CostF

Fig. 2. An illustration example of consulting-based scheduling of distributed
I/Os

present the solution framework and highlight the particular

techniques we adopted.

B. Solution Overview

We describe the general picture of our solution in this

section. Briefly speaking, there are two steps. The first step

is to organize RDF data on the Cloud (key,value) storage. As

shown in the Fig.3, we extract “entities” and “entity classes”

(both will be defined in Section 4) from the original RDF

graph G and build the “compressed RDF entity graph”. Using

graph partition tools, we further partition the entity classes to

distributed computing nodes, such that the structure locality

of the original RDF graph can be well preserved. On each

computing node, we treat the “entities” of the same entity class

as high dimensional data. For example, the entity “publication”

has properties like title, year, type and etc. By adopting the

Space Filling Curve technique, we can maintain an order

preserving layout of the RDF data that particularly fits for

the queries with range and order constraints.

DataNode DataNode DataNode DataNode…

Co

ordinator

Co

ordinator

Co

ordinator

Co

ordinator…

Query Engine Query Engine Query Engine

Query

RDF

Graph

Entity Extraction

Entity

Graph

(Key, Value) Storage

M
a
ste
rN
o
d
e

Graph Partition

Fig. 3. An overview of the solution framework

The second step, as shown in the upper part of Fig.3, is

to introduce the query coordinator on each computing node

568

to vote and decide the scheduling function of distributed

I/Os. To be specific, a SPARQL query is evaluated as the

following. Given a query Q, we first identify the entity classes

that contains the valid results. This can be done easily by

introducing an in-memory index of the “compressed RDF

entity graph” on a query engine. Afterwards, the query is for-

warded to the computing nodes that hold the RDF data. Then,

the Consulting protocol is initiated immediately among these

query-involved computing nodes to decide further scheduling

of I/O operations on each node. Note that the scheduling

function is dynamically evolved along with the computation.

Whenever some nodes finished the local I/O operation, they

utilize the Consulting protocol to inform other computing

nodes the collected statistics of scanned data. If the query

has valid output, after all the query-involved computing nodes

finish the I/O operations, the finial result can be obtained

with one Reduce task. We believe the novel representation

and layout of RDF data on the Cloud platform, as well

as the distributed I/O scheduling, are the core technique of

our solution framework. Therefore, we mainly focus on the

elaboration of these two points in this paper.

IV. DATA MODEL

As elaborated in the problem statement, we intend to eval-

uate SPARQL queries efficiently by reducing the unnecessary

I/O traffics as much as possible and postponing the MapRe-

duce jobs until we are perfectly sure about the minimum set

of data blocks that contain the desired results. However, to

support such an evaluation, range-aware index must be built

on each data node. In this section, we present a novel RDF

representation on the (key,value) storage, namely the Entity

Aware Graph compREssion model, shorted as EAGRE, and the

layout strategy of RDF data to effectively support the range-

aware index.

A. The EAGRE Model

One essential difference between RDF data and other data

records with multiple attributes is that RDF implies semantic

description of entities in the real world. Meanwhile, SPARQL

is designed to facilitate the query over correlated entities.

Therefore, instead of employing attribute-based partition and

indexing techniques from traditional database, like row-store

and column-store, we explore an entity-base model of RDF

data to facilitate the SPARQL query evaluation.

There have been some interesting efforts to extract entities

from RDF depositary[20][21][22]. However, the comparisons

of RDF entity definition and extraction functions are beyond

the scope of this work. We try to adopt a simple entity concept

that serves as the atomic elements for query analysis and

processing. Intuitively, given a Subject s, the set of all triplets

having s as the Subject can be considered as a description

of s, which contains the entire knowledge about s. Thus, we

consider an entity to be a Subject and its complete description.

Formally, we define an RDF entity as follows:

Definition 2 (RDF Entity) A RDF entity, denoted as En =
(vR, Des(vR)), is a 2-level tree structured subgraph of RDF

graph G, where vR is the root, and Des(vR) is the set of all

out-going edges from vR and vR’s one-hop neighbors in G,

as well as the binding labels.

Consider the example given in Fig.1, entities

“ publication2”, “ publication3” and “ author1” are shown

in Fig.4. Note that we adopt a prefix “E:” to denote an

entity. Clearly, entities can be recursively defined. In other

words, an entity may be described by many other entities,

e.g. “E: author1” is described by entities “E: publication1”,

“E: author3” and “E: author2”.

E:_author1

E:_publication1

E:_publication3

journal

E:_author2 E:_author3

“Alice”

“1940”

rdf:hasName rdf:hasPublication
rdf:hasType

rdf:year

xml:foaf
rdf:coauthor

E:_publication2

article “Why SPARQL?”

rdf:hasTitlerdf:hasType

“1936”

rdf:year

Fig. 4. Entities examples derived from Fig.1, rooted as “author1”, “publica-
tion2” and “publication3” respectively

We name an entity by the label of its root vR, and model

the edge labels and corresponding one-hop neighbors as (key,

value) pairs as the description of vR. For example, entity

“E: publication3” is described with {(rdf:hasType, journal),

(rdf:year, “1940”)}. In general, we describe an entity in the

following forms:

(E : Subject, (key, value) list)

Let “E:Subject” serve as a key, an entity perfectly fits into well-

known (key,value) stores that support structured value types,

e.g. Cassandra [23]. For clear illustration purpose, we use the

term “description keys” to denote the set of keys from an

entity’s (key,value) list for the rest of this paper. Since the RDF

entity can be recursively defined, it implies the correlation

between entities, which can be described with a RDF entity

graph as follows:

Definition 3 (RDF Entity Graph) RDF entity graph

GEn={VEn, EEn} is a directed graph, where

VEn={vEn|vEn is a RDF entity}, EEn={〈vEn, v
′
En〉|v

′
En ∈

Des(vEn), where vEn, v
′
En ∈ VEn}.

As a matter of fact, an entity graph GEn has almost the

same topology structure comparing to the original RDF graph

G, except the vertices in G that have no out-going edges are

removed in GEn. For example, the left diagram of Fig.5 shows

the RDF entity graph which is converted from the RDF graph

given in Fig.1. Therefore, an entity graph can also be huge

and impractical to query. However, an intuitive observation

is that many entities share great similarity in terms of the

keys of their description. To be specific, given two entities En
and En′, we measure the similarity between them with the

following method,

τ =
|Des(En) ∩Des(En′)|

Max
{
|Des(En)|, |Des(En′)|

} (1)

569

C:_author1

C:_publication

C:_author

rdf:hasPublication

xml:foaf

rdf:coauthor

rdf:hasPublication

E:_author1

E:_publication1

E:_publication2 E:_publication3

E:_author2 E:_author3

rdf:coauthor

rdf:hasPublication

rdf:hasPublicationrdf:hasPublication

xml:foaf

Fig. 5. The RDF entity graph and compressed RDF entity graph of the RDF
graph given in Fig.1

As long as τ is larger than a given threshold, we consider

two entities sharing the same set of description keys. The

threshold value highly depends on how fuzzy the dataset is

and only contributes to the efficiency of GEn compression. In

our work, we setup the condition of τ ≥ 0.9. Thus, we can

define the RDF entity class concept as follows:

Definition 4 (RDF Entity Class) Two RDF entities Eni and

Enj belong to the same entity Class iff they share the same

set of description keys and are not on-hop neighbored vertices

in GEn.

By grouping the entities of the same class in GEn, a

“compressed” RDF entity graph can be derived, which is

much simpler and easier to query. We formally define the

compressed RDF entity graph as follows:

Definition 5 (Compressed RDF Entity Graph) A

compressed RDF entity graph GC={VC, EC} is a

directed graph, where VC={vC|vC is a RDF entity class},

EC={〈vC, v′C〉|∃En ∈ vC, ∃En′ ∈ v′C, and En′ ∈ Des(En),
where vC, v

′
C ∈ VC}.

The right diagram in Fig.5 presents the compressed RDF

entity graph of the RDF graph shown in Fig.1. Note that

we adopt the prefix “C:” to denote an entity class. Clearly, a

compressed RDF entity graph shields the detailed knowledge

of entities, and has entity correlations be well preserved at the

meanwhile.

B. RDF Data Layout

The layout of RDF data implies two decisions to make.

First, which RDF data should be deployed to which computing

node. Second, on each computing node, how RDF data should

be organized. The data layout is a critical issue for SPARQL

query evaluation, because it determines how many computing

nodes are involved in a query evaluation, as well as the cost

of local evaluation on each computing node. In this section,

we elaborate our RDF data layout strategy to efficiently

support the range and order sensitive query evaluation on local

computing nodes, which can effectively reduce the total I/O

cost to answer a SPARQL query.

The RDF data preprocessing involves three steps. First, we

need to extract RDF entities and discover RDF entity classes,

which has been discussed in Section 4.A. Second, we compute

a partition of the compressed RDF entity graph to decide

the deployment of RDF data to distributed storage nodes.

Third, we compute the layout of RDF data on each computing

node and set up the auxiliary indexing structure. Considering

the huge volume of RDF data to process, the preprocessing

requires a scalable computing paradigm, e.g., MapReduce.

Therefore, the RDF data is first randomly partitioned to

computing nodes. A re-allocation of RDF data is performed

later on.

The extraction of RDF entities and the discovery of RDF en-

tity classes can easily be implemented within the MapReduce

computing framework. Pseudo codes describing the processes

are described in Alg.1 and Alg.2, respectively. We employed

two MapReduce jobs to do the work. First, we extract entities

by grouping RDF triples by the Subject. Then, by making

the describing key of each entity the hashing key, entities are

grouped according to the similarity of their describing keys.

In the implementation, we allow a little difference of entities’

describing keys to form entity classes by setting up τ ≥ 0.9.

The reason is that the real RDF data easily contain noises,

missing properties and values. As the example shown in Fig.1,

not all publications have the title value. We adopt a similar

method introduced in [24] to enable the “set similarity join”

using MapReduce.

Algorithm 1: RDF entity extraction

Data: A set of RDF 〈s, p, o〉 triples

Result: A set of RDF entities

for each Map task do

key← s and value← 〈p, o〉
Output(key,value)

for each Reduce task do

for each key do

Assemble the description of given key

value← An entity En

Output(key,value)

Algorithm 2: Discovering RDF entity classes

Data: A set of RDF entities (Label(En), Des(En))

Result: A set of RDF classes

for each Map task do

key← description key of En and value← En
Output(key,value)

for each Reduce task do

for each key do

Check the entity class condition given in Definition 4

Output valid RDF entity classes

The second step is to re-allocate RDF entities to distributed

storage nodes. After entity classes are discovered on each

storage node, the entity class correlations can be computed

locally on each node. Then, these partial graphs can be

reduced to a central node to assemble the complete compressed

RDF entity graph. Note that the reducing phase does not

involve entity copying over network, only the graph structures

representing entity class correlations are delivered. The data

deployment is guided by the partition of the compressed

RDF entity graph. There have been abundant research efforts

towards graph partition, many of which are workload-driven

methods. Since we do not assume any pre-knowledge of the

570

query workload, we intend to partition the graph in some way

to best preserve the local topological structures. We adopt a

well-recognized graph partition tool METIS[25] to do the

job. Eventually, we can easily re-allocate the RDF entities

according to the partition results. Clearly, the first two steps

of preprocessing is mainly dominated by the I/O and network

copying of the entire dataset. In the worst case, a RDF triple

can be read and written 3 times. Therefore, the computation

complexity is O(N), where N is the total number of data

blocks that hold the entire RDF dataset.

In the third step, we consider the layout of RDF data

on each storage node. The query evaluation scenario is that,

given a query, we want to immediately decide the location

(i.e., a data block) of the RDF triples that match the query’s

BQPs. Moreover, we want to know a sequence of RDF triples,

probably sorted under certain Predicate, such that queries with

result order constraint can be effectively supported. In our

solution framework, we consider the RDF data as a set of RDF

entities which are grouped into correlated classes. Therefore,

we organize the RDF data on the basis of entity classes. Within

each entity class, entities sharing the same description keys

are in fact high dimensional data records. We adopt the space

filling curve, which has been widely used for indexing high

dimensional data, to compute the layout of RDF entities of

the same entity class.

1

2

2 3

3
4

5
6

6 7

7
8

9
10

10 11

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(a) Z-order curve based RDF entity lay-

out

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

7

9

10

111

2

3

4 5

6 8

(b) Hilbert space filling curve based

RDF entity layout

Fig. 6. Using space filling curves to compute the layout of RDF entities

To elaborate, consider the example shown in Fig.6. Assume

the description of an entity are two dimensional data, and a

disk block contains at most 6 entities. Based on the value

distribution of each dimension, we can compute the layout of

all 64 RDF entities using the well-known space filling curves.

The shadowed region indicates that, given a query range

[2,4]×[4,5], the data blocks containing the desired entities can

be effectively located.

Our solution benefits from the space filling curve deter-

mined RDF entity layout in three folds. First, it provides an

effective solution to save the I/O cost of unnecessary disk

scan. Given the query range on multiple dimensions, we can

immediately compute the inter section of data blocks satisfying

each given dimension’s constraints. When the dimensionality

increases, the selectivity on data blocks also increases. Be-

sides, by associating the value range information of each data

block to its meta data, given a data block, we can immediately

decide the value range of entities on any dimension. For

example, in case of Fig.6(a), given data block 1, we know

its value range is [1,4]×[1,2]; in case of Fig.6(b), we know

block 1’s value range is [1,2]×[7,8]∪[3,4]×[8].

The second advantage of such a layout strategy is the order

preserving property of space filling curves. Given a space

filling function, the sequence of RDF entities are determined

solely by their description values, which is a one-to-one

mapping. Therefore, given the pre-knowledge of the space

filling function, it is possible to sort all the RDF entities

with regard to any description key in only one scan, which

effectively reduces the complexity of sorting to linear time.

Thirdly, such a layout schema functions well in case of ap-

pending updates. With new entities arrived, its logical position

in the global “space filling curve” can be effectively computed,

which implies which data block it should be deployed to.

However, since the target data block is already full, we only

need to associate the target data block a new block to store the

new entities. When there is a read operation, a data block as

well as the data blocks associated to it are scanned. A critical

problem is that the increasing number of random access of

disk blocks can introduce unacceptable overheads. Therefore,

in the implementation we can specify a time threshold for the

average data block access time. If the threshold is violated,

the re-construction of the entity layout is performed.

Note that we propose the space filling curve based RDF

entity layout because it can effectively help decide the disk

I/O volume on each computing node. Although we do not hold

the proof that, without any pre-knowledge on query patterns,

the space filling curve based layout is the optimal solution in

terms of filtering out unnecessary disk block scans to the most

extend. As we shall elaborate in the later section, experiments

show that our solution demonstrates considerable I/O saving

comparing to other off-the-shelf layout strategies. An interest-

ing observation is that, given two space filling functions that

are in fact equivalent, they may demonstrate different filtering

power for a specific query. In Fig.6’s example, given the query

range [2,4]×[4,5], Z-order gives data block 2,3,6 and 7 while

Hilbert gives only data block 2,3 and 6. Apparently, with the

pre-knowledge of query pattern, a better layout strategy can

be derived. We consider it an interesting future problem to

investigate.

V. DISTRIBUTED I/O SCHEDULING

As elaborated in the last section, the efforts we made on the

representation and the layout of RDF data on each computing

node are to serve the I/O efficient distributed evaluation of

SPARQL queries. Given a SPARQL query being forwarded to

k computing nodes, on each node we can almost immediately

decide the data blocks to retrieve and the corresponding value

ranges of any variable given in the query. The real problem, as

we state in Section 3, is to effectively schedule the distributed

I/O to postpone MapReduce jobs such that the total time cost

for query evaluation is minimized. In this section, we present

an estimation-based self-tuning scheduling strategy to reduce

the unnecessary I/O as much as possible.

571

A. Problem Property

Recall that our problem setting is that a query is forwarded

to k distributed computing nodes, initially a node ni needs to

scan Ni data blocks to answer the query. As we introduce

the Consulting mechanism, it is possible to do the scan

on only a few nodes in the first place to obtain the fine

drilled variable value distribution, such that the I/O volume on

remaining nodes can be greatly saved through the Consulting.

The problem is to find a scheduling strategy to reduce the

total time cost on the I/O volume. Let S={s0, s1, ..., sm−1}
be a scheduling strategy, where each stage si ∈ S is a set

of distributed I/O operations on some computing nodes. The

consulting process is performed between any two successive

stages. Thus, as stated in Section 3.A, we define the problem

as an optimization problem, which is to find a Sopt such that
∑m−1

k=0 Cost(sk) is minimized. Note that Cost(si) is defined

as the maximum number of disk I/O in stage si.

Before we dive into the detailed solution, we first define the

following notations for clear illustration purpose:

Scan-Contribution SC(ni, S) denotes the number of

disk blocks that can be saved by scanning node ni, after all

the stages of scanning in S have been performed.

Scan-Heritage SH(ni, S) denotes the number of disk

blocks on node ni that can be saved after all the stages of

scanning in S have been performed.

Intuitively, to compute the optimal scheduling Sopt, we

concern about two factors: 1) how the initial stages can affect

the later stages; 2) Is there an connection between the local

optimization and the global optimization? As a matter of fact,

by investigating these two factors, we can easily examine that

the following two lemmas are true.

Lemma 1 Given S 6= S′, if
⋃

si∈S
si=

⋃

s′
i
∈S′ s

′
i, then

SC(ni, S)=SC(ni, S
′) and SH(ni, S)=SH(ni, S

′).

Lemma 1 indicates that, given k distributed I/Os to schedule,

if we have t (t < k) I/Os already performed, no matter

how these t distributed I/Os are scheduled, the hints for the

remaining k − t I/Os are the same.

Lemma 2 Assume S = {s0, s1, ..., sm−1} is the optimal

scheduling of N =
⋃

si∈S
s distributed I/Os, then S′ =

{s0, s1, ..., sm−2} ⊂ S is the optimal scheduling of N ′ =
⋃

si∈S′ si distributed I/Os.

Proof: Prove by contradiction. Assume S∗ is the optimal

scheduling for N ′ =
⋃

si∈S′ si. By Lemma 1, SH(ni, S
∗) =

SH(ni, S
′) and SC(ni, S

∗) = SC(ni, S
′), where ni ∈ sm−1.

Thus, the cost of sm−1 is the same in these two scenarios. It

implies that S is also not the optimal, which contradicts to the

assumption.

Although we can recursively define the optimal solution

function based on Lemma 2, there is no dynamic programming

solution to our problem. Because there is no way to obtain

the initial value of SC(ni, {nj}) and SH(ni, {nj}), where

ni 6= nj , unless we perform the scan on each node in the first

place. However, Lemma 2 implies an important property of

our problem that the optimal solution requires the best effort

at each scheduling stage.

B. Scheduling Strategy

As the Scan-Contribution and Scan-Heritage

value of each node can only be determined at running time, we

propose an estimation based self-adaptive scheduling strategy

that can achieve the optimal scheduling target.

Initially, when a query is forwarded to k distributed comput-

ing nodes, each node can determine the data blocks to access

and the value ranges of every data block. Assume the query has

l variables, thus, each computing node holds an array of length

l which contains all the value range information. With one time

of consulting, each node holds a matrix of size l × l. Then,

by conducting the range intersection operation, each node can

filter out the data blocks that cannot possibly contain valid

answers. However, there is no straightforward information

about how a data node ni’s Scan-Contribution and

Scan-Heritage value in case that any other computing

nodes has not performed the I/O operation. Therefore, we

employ an estimation-based method to find out the first stage

of I/O operations.

Assume to evaluate a query of p variables {v1, v2, ..., vp},

a data node ni initially has Ni data blocks to scan, let

X={(a1, b1), (a2, b2), ..., (ap, bp)} denote the value ranges of

all variables in the Ni data blocks. Thus, we can estimate the

selectivity on a variable vi using Ni

bi−ai
, denoted as sel(vi). The

intuition is that, if sel(vi) is small, it implies that more fine

drilled value distribution can be derived. For example, 50 data

blocks contain variables v1 and v2’s value ranges as [2,5] and

[2,50], respectively. It is more likely that the 50 data blocks

hit v1’s value 2,3,4 and 5. On the contrary, the 50 data blocks

may only hit partial values of v2’s value range. Noted that we

also introduce Ni as a dominating factor in the computation,

such that the I/O operation on a data node which has a large

Ni value tends to be postponed.

A distributed I/O scheduling algorithm is described in

Alg.3. Lines 1-3 is the initialization phase. Given a SPARQL

query Q, each node identifies the number of data blocks to

scan and the value range of variables. After the first time

Consulting(line 5), every node is fully aware of the variable

value distribution on other computing nodes, therefore, they

can update their I/O cost and now every node has agreed on

the variables’ value ranges. Note that up to this step, it is

feasible to determine whether the query has a valid answer, as

the examination process taken in line 8-9. Thus, by computing

every variable’s selectivity of each computing node(line 10), it

is possible to identify the most beneficial action to take such

that the I/O volumes on all computing nodes are expected to

be reduced the most. Finally, we pick the set of data nodes that

have the smallest selectivity value on different variables, and

schedule them as the first stage of I/O operations. The iteration

stops until all the k I/O operations have been scheduled.

The above scheduling algorithm does not rely on data

statistics and therefore does not require the statistics collection

process during the data preparing stage. However, as long as

572

Algorithm 3: Estimation-based self-adaptive scheduling of

distributed I/O operations

Data: A SPARQL query Q of p variables; k computing nodes {n1, ..., nk}
Result: A scheduling of k distributed I/O operations S

1 for each node ni do

2 Identify Ni data blocks to access

3 Generate the corresponding p variable value ranges

Xi={(a1, b1), (a2, b2), ..., (ap, bp)}

4 while ∃ni has not been scheduled do

5 Consulting

6 for each node ni do

7 Update Ni and Xi

8 if ∃vi’s value range is ∅ then

9 Return empty answer set and abort the evaluation process

10 Compute the variable selectivities {sel(v1), sel(v2),...,sel(vp)}

11 for each variable vi do

12 Select the data node that has the smallest selectivity on vi

13 Schedule the set of selected data nodes to perform the I/O operation

statistics are available, it can be easily plugged in to serve the

scheduling. Clearly, we perform the scheduling in a best effort

fashion in every stage. To elaborate, in absence of a data node’s

Scan-Contribution and Scan-Heritage value, we

always make the decision that promises the greatest reduction

of I/O volumes. After each stage, we have to adaptively

learn new hints from the finished I/O scans and make new

decisions. According to Lemma 2, our solution is expected

to achieve the optimal scheduling from a probabilistic point

of view. An important concern is that if our I/O reduction

oriented scheduling has negative side-effect on exploring the

massive parallelism of the Cloud computing framework. As a

matter of fact, our scheduling strategy only guides the variable

evaluation sequence rather than the number of nodes involved

for evaluation. The essential parallelism of an evaluation task

only relies on the volume and the layout of data that need to

be processed.

By solving the scheduling of distributed I/Os, we can

effectively reduce the total number of data blocks to read

for computation. Although we postpone the MapReduce job

among k distributed nodes, the job is expected to accomplish

more quickly since significant volume of unnecessary I/O and

network traffics are eliminated.

VI. EXPERIMENTS

We run all the experiments on a cluster of 28 computing

nodes. Each node has 2 CPUs of 3.06GHz and 2GB memory,

200GB disk storage attached, running 2.6.35-22-server #35-

Ubuntu SMP. We use Hadoop-1.0.0 to build the system. The

setting of some major Hadoop parameters are given in Table I,

which follows the setting suggested by [26]. Notice that we set

the fs.blocksize to its default value, which may be too small for

normal MapReduce jobs since it brings significant scheduling

overhead. However, we intend to make it small to avoid

unnecessary data loading for query evaluation. We use the

TestDFSIO program to test the I/O performance of the system,

and find that the system performance is stable, with average

writing rate 2.98MB/sec and reading rate 18.17MB/sec. For

the Consulting protocol, we employ MPICH2-1.4.1p1 and turn

on the O3 compiler switch. We run each experiment job with

3 cold-start and report the average execution time.

TABLE I
HADOOP PARAMETER CONFIGURATION

Parameter Name Default Set to

fs.blocksize 64MB 64MB

io.sort.mb 100M 512MB

io.sort.record.percentage 0.05 0.1

io.sort.spill.percentage 0.8 0.9

io.sort.factor 100 300

dfs.replication 3 3

In the experiments, we employ two real datasets, Billion

Triple Challenge 2011 and Yago2, and three synthetic datasets

generated using the SP2 [27] benchmark data generator. Table

II summarizes the brief statistics of all the datasets. In the

table, we show the original number of triples of each dataset,

as well as the number of entities and entity classes that

can be extracted based on our definition. “M” denotes that

numbers are counted in millions. Apparently, by introducing

the compressed entity class graph, we can easily reduce the

size of the original RDF graph by at least two orders of

magnitude.

TABLE II
EMPLOYED DATASETS FOR EVALUATION

Dataset # Triples(M) # Entity(M) # Entity Class(M)

Yago2 295 10 0.06

BTC2011 2170 460 11.5

Syn.A 100 5 0.02

Syn.B 1000 50 0.35

Syn.C 5000 250 2

To demonstrate the effectiveness of our solution, we employ

a set of benchmark queries over different datasets. In general,

we focus on three aspects of query evaluations: 1) time

efficiency; 2) how evaluation strategy affects the I/O cost

and network traffic volume; 3) the scalability of our solution.

In the experiments, we employ our earlier solution using

the Predicate-based partition [8] and an open source project

SHARD [28] as competitors.

The Predicate-based partition solution (shorted as P-

Partition) works by grouping RDF triples by Predicates, and

enumerate the sorting of two triplet patterns “S-P-O” and

“O-P-S”. The P-Partition solution from [8] also employs

sophisticated scheduling of MapReduce jobs and optimization

techniques like bloom filter to reduce the data copying volume

over the network. The SHARD project treats RDF data as a

graph, no special data layout function is employed. After the

RDF data are uploaded into the HDFS, it builds simple index

structure to represent the graph structure. Given a SPARQL

query, it conducts graph matching locally on each computing

node and finally merge the results.

Before giving the detailed discussion about the experimen-

tal results, we highlight the achievement of our solution.

Generally, our data layout strategy and the Consulting-based

evaluation plan can effectively reduce the disk I/O volume and

573

the network traffic, and achieve over an order of magnitude of

time saving in query evaluations.

A. Setup

We first describe the time cost to setup the EAGRE-based

RDF depository for query evaluation. Fig.7 presents the time

costs to setup the Yago2, BTC2011 and Syn.B datasets,

respectively. As summarized in Fig.7(a), there are three major

steps in the data preparation process. Apparently, the cost on

uploading data to the HDFS and computing the compressed

entity class graph is the dominating factor. On the other hand,

data re-distribution is somehow less expensive (which depends

on the partition rule employed in the data uploading stage),

and the RDF entity layout computation on each computing

node can be done very efficiently.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Yago2 Syn. B BTC2011

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
)

Data Set

EAGRE
Repartition

Layout Computing

(a)

 100

 1000

 10000

Yago2 Syn. B BTC 2011

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
)

Data Set

EAGRE
P-Partition

SHARD

(b)
Fig. 7. Setup time cost

Fig.7(b) presents the time costs to setup the same datasets

using different solutions. The Predicate-based partition (de-

noted as P-Partitions) only needs one MapReduce job to

partition triples according to the Predicate, therefore, no

repartition cost is introduced. SHARD performs simple local

indexing on each computing node after the uploading process.

Although the EAGRE-based solution takes longer time during

the data preprocessing, however, the preprocessing is usually

conducted off line and the cost can always be amortized.

B. Efficiency Test

To validate the effectiveness of our solution, we employ

three sets of benchmark queries over different datasets. For

each SPARQL query, we measure the evaluation make span,

number of I/O Read and number of network volumes using

different evaluation strategies. To compare with our EAGRE-

based solution, we also employ the Predicate-based partition

solution from work [8], and one Hadoop-based open source

project SHARD [28] which utilizes a graph matching strategy

for the SPARQL evaluation. We elaborate the results as

follows:

1) BTC2011 Dataset: We employ the benchmark used in

[3] for evaluation. We left Q8 out because it is no longer

a valid query against the BTC2011 dataset (unmatchable

Predicates). The results are presented in Fig.8. Apparently, no

matter whether z-curve or hilbert curve is employed for the

entity layout, which are denoted as EAGRE(Z) and EAGRE(H)

respectively, our evaluation strategy achieves significant time

saving. Consider two extreme examples Q4 and Q7. Q4

includes a BQP having the Predicate as a variable, which is

a disaster for the P-Partition. Because it needs to scan large

volume of data to obtain the results. Similarly, SHARD also

has difficulty in answering such queries. Without the guidance

of the Predicate value, SHARD generates as much candidates

as possible to guarantee the correctness of the answer. Compar-

ing to other queries, Q7 includes the biggest number of BQPs,

therefore, it implies more information about the desired RDF

entity structure. Thus, it benefits the evaluation in case that we

organize the data according to the RDF entity correlations.

On the contrary, complex BQPs impose hard decision on

the generation and scheduling of MapReduce jobs, thus the

performance of the P-Partition method is not satisfactory.

Fig.8(b) and 8(c) prove that the EAGRE solution effectively

reduces the number of disk scans and the data copying volume

over the network. Comparing to P-Partition, EAGRE transmit

high fraction of data that it reads from the disk, which implies

efficient reduction of disk scans.

2) Yago2 Dataset: We employ the benchmark given in

work [2] for evaluation. The results are presented in Fig.9.

As stated in [2], the 8 queries are thematically grouped into

three groups. The first group of queries (Q1-Q3) concern

oriented facts; the second group (Q4-Q6) asks about oriented

relationships; and the third group consists of unknown Pred-

icate for evaluation. As a matter of fact, the orientation of

entities are well preserved in the EAGRE model. Thus, by

inquiring the compressed entity class graph, the entity class

containing the valid answer can be instantly derived. On the

other hand, P-Partition keeps no information about the RDF

graph structure. Although SHARD evaluates SPARQL queries

using graph matching techniques, it performs a best-effort

search on each computing node without information exchange

until the final Reduce task. Therefore, as shown in Fig.9, the

EAGRE solution achieves even more time saving comparing

with that in BTC2011 dataset.

3) SP 2 Dataset: We employ dataset Syn.B and the bench-

mark given in work [27] for evaluation. The results are

presented in Fig.10. As a matter of fact, the SP 2Benchmark

queries are performed over a synthetically generated DBLP-

like dataset. One thing special about the SP 2Benchmark query

is that it tests how the query engine evaluates queries, which

have only limited or fix number of results, over RDF datasets

in different scales. For example, Q1 returns only one triple

no matter how large the dataset is. As shown in Fig.10(a),

comparing to P-Partition and SHARD, the time efficiency

gains of EAGRE vary from query to query. However, EAGRE

demonstrate consistent evaluation time cost for queries that

have very limited returned answers, e.g. Q1,Q7,Q9 and Q11.

One interesting observation is made over Fig.10(b) and 10(c).

Although EAGRE and P-Partition have very different costs on

disk scan, the network volume of these two solutions are not

much different. The reason is that P-Partition employs bloom

filter to reduce the shuffling of undesired data blocks.

C. Scalability Test

To prove the scalability of our solution, we run the SP 2

benchmark queries against three synthetic datasets in different

scales, as shown in Fig.11(a). Apparently, for queries that

574

 10

 100

 1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(a) Time Cost

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

I
/
O

R
e
a
d

(
M
B
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(b) I/O Cost

 100

 1000

 10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
e
t
w
o
r
k

V
o
l
u
m
e

(
M
B
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(c) Network Cost

Fig. 8. Efficiency test over the BTC 2011 dataset

 1

 10

 100

 1000

 10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(a) Time Cost

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

I
/
O

R
e
a
d

(
M
B
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(b) I/O Cost

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

N
e
t
w
o
r
k

V
o
l
u
m
e

(
M
B
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(c) Network Cost

Fig. 9. Efficiency test over the Yago2 dataset

 1

 10

 100

 1000

 10000

Q1 Q2 Q3a Q4 Q5b Q6 Q7 Q8 Q9 Q10 Q11

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(a) Time Cost

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3a Q4 Q5b Q6 Q7 Q8 Q9 Q10 Q11

I
/
O

R
e
a
d

(
M
B
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(b) I/O Cost

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3a Q4 Q5b Q6 Q7 Q8 Q9 Q10 Q11

N
e
t
w
o
r
k

V
o
l
u
m
e

(
M
B
)

Queries

EAGRE(Z)
EAGRE(H)
P-Partition

SHARD

(c) Network Cost

Fig. 10. Efficiency test over the synthetic SP 2 benchmark dataset B

 1

 10

 100

 1000

Q1 Q2 Q3a Q4 Q5b Q6 Q7 Q8 Q9 Q10 Q11

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
)

Queries

Syn.A
Syn.B
Syn.C

(a) Dataset volume in different scales

 1

 10

 100

 1000

Q1 Q2 Q3a Q4 Q5b Q6 Q7 Q8 Q9 Q10 Q11

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
)

Queries

n=8
n=16
n=28

(b) Computing nodes in different scales

Fig. 11. Query efficiency over the synthetic SP 2 benchmark datasets in different scales

only return very limited or fixed number of triples, our

solution gives about even performances. Because we target

at locating the minimum set of disk blocks that contain the

valid answer in the very first place of evaluation, such that the

query processing time is mainly dominated by the number of

returned triplets. Moreover, the results presented in Fig.11(a)

demonstrate convincing scalability of our solution. Along with

the rapid growth of underlying data volume, our solution takes

the advantage of the parallel processing and achieves almost

linear speedup (y-axis is in log scale). Fig.11(b) presents

another scalability test on how our solution adapts to different

size of clusters. In the figure, we use n to denote the number

of computing nodes employed to setup the system. The same

observation is made on this test, that the query evaluation time

of our solution is mainly dominated by the result size. Take

Q4 for example, as the output volume is large, it is beneficial

to include more computing nodes to amortize the I/O time

cost.

VII. RELATED WORK

There are mainly two categories of solutions for RDF

management and query processing. One is to use traditional

RDBMS technologies, either stand-alone sever or distributed

575

(parallel) computing framework. RDF data are represented as

tables in databases. Intensive research interests focus on the

RDF decomposition (SW-Store [6]) or composition (property

table from Jena), the index construction and searching (Hexas-

tore [7], RDF-3X [2]), as well as the query optimization [29].

However, due to the limitation of RDBMS’s scalability, the

existing solutions cannot meet the demands for managing ex-

tremely large scale RDF data in the coming future. Moreover,

these solutions are closely related with system hard states,

which are hard to maintain.

The other solution category is to incorporate NoSQL

database to address the scalability and flexibility issues in

the first place. Many works, like [30][31][32][33], adopt the

Cloud platform to solve the RDF data management problem.

However, many of them focus on utilizing high-level defini-

tive languages to create simplified user interface for RDF

query processing, which omit all the underlying optimization

opportunities and have no guarantees on efficiency. On the

contrary, Husain et al. [9] focuses on effective RDF data

storage and querying. It adopts a greedy strategy to pick a

join that may produce the smallest size of intermediate results.

Unfortunately, it has no guarantee on the overall efficiency.

An important recent work presented in [34] attempts to

combine the advantages of RDBMS and the scalable Cloud

platform, which adopts RDF-3X on each computing node

and manages the entire cluster using Hadoop. Essentially, it

follows the system architecture of HadoopDB [35]. Although

it demonstrates impressive performance in query evaluation,

the heavy cost on maintaining the RDBMS on all computing

nodes remains a bottleneck of scalability and fault tolerance.

Comparing with our solution, we made different choices on

the architecture design. And our primary goal is to advance

the SPARQL query evaluation on a scalable NoSQL platform.

VIII. CONCLUSION

In this paper, we propose a novel Entity-Aware Graph

compREssion model of RDF data on the Cloud platform,

and a Consulting-based query evaluation strategy to prune

unnecessary disk scans. We propose a distributed scheduling

strategy to coordinate the I/O operations on distributed com-

puting nodes. Extensive experiments show that, compared to

other MapReduce-based state-of-art solutions, our method can

achieve over an order of magnitude of time saving for the

SPARQL query evaluation on the Cloud.

ACKOWNLEDGEMENT

This work is supported in part by the Hong Kong RGC GRF

Project No.611411, HP IRP Project 2011, National Grand Fun-

damental Research 973 Program of China under Grant 2012-

CB316200, Microsoft Research Asia Grant, MRA11EG05 and

HKUST RPC Grant RPC10EG13.

REFERENCES

[1] C. Olston and et. al., “Pig latin: a not-so-foreign language for data
processing,” in SIGMOD Conference, 2008, pp. 1099–1110.

[2] T. Neumann and et. al., “The rdf-3x engine for scalable management of
rdf data,” VLDB J., vol. 19, no. 1, pp. 91–113, 2010.

[3] T. Neumann and G. Weikum, “Scalable join processing on very large
rdf graphs,” in SIGMOD Conference, 2009, pp. 627–640.

[4] T. Neumann and et. al., “x-rdf-3x: Fast querying, high update rates, and
consistency for rdf databases,” PVLDB, vol. 3, no. 1, pp. 256–263, 2010.

[5] D. J. Abadi and et. al., “Scalable semantic web data management using
vertical partitioning,” in VLDB, 2007, pp. 411–422.

[6] D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach, “Sw-store: a
vertically partitioned dbms for semantic web data management,” VLDB

J., vol. 18, no. 2, pp. 385–406, 2009.
[7] C. Weiss and et. al., “Hexastore: sextuple indexing for semantic web

data management,” PVLDB, vol. 1, no. 1, pp. 1008–1019, 2008.
[8] X. Zhang and et. al., “Towards efficient join processing over large rdf

graph using mapreduce,” in SSDBM, 2012, pp. 250–259.
[9] M. F. Husain and et. al., “Scalable complex query processing over large

semantic web data using cloud,” in IEEE CLOUD, 2011, pp. 187–194.
[10] H. Kim and et. al., “From sparql to mapreduce: The journey using a

nested triplegroup algebra,” PVLDB, vol. 4, no. 12, pp. 1426–1429,
2011.

[11] P. Ravindra and et. al., “Efficient processing of rdf graph pattern
matching on mapreduce platforms,” in DataCloud-SC, 2011, pp. 13–
20.

[12] X. Zhang and et. al., “Efficient multi-way theta-join processing using
mapreduce,” PVLDB, vol. 5, no. 11, pp. 1184–1195, 2012.

[13] L. Zou and et. al., “gstore: Answering sparql queries via subgraph
matching,” PVLDB, vol. 4, no. 8, pp. 482–493, 2011.

[14] M. Arias and et. al., “An empirical study of real-world sparql queries,”
CoRR, vol. abs/1103.5043, 2011.

[15] F. Picalausa and et. al., “What are real sparql queries like?” in SWIM,
2011, pp. 7:1–7:6.

[16] S. Duan and et. al., “Apples and oranges: a comparison of rdf bench-
marks and real rdf datasets,” in SIGMOD Conference, 2011, pp. 145–
156.

[17] F. Prasser and et. al., “Efficient distributed query processing for au-
tonomous rdf databases,” in EDBT, 2012, pp. 372–383.

[18] T. Nykiel and et. al., “Mrshare: Sharing across multiple queries in
mapreduce,” PVLDB, vol. 3, no. 1, pp. 494–505, 2010.

[19] F. N. Afrati and et. al., “Optimizing multiway joins in a map-reduce
environment,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 9, pp. 1282–
1298, 2011.

[20] M. Svoboda and et. al., “Linked data indexing methods: A survey,” in
OTM Workshops, 2011, pp. 474–483.

[21] F. Goasdoué and et. al., “View selection in semantic web databases,”
PVLDB, vol. 5, no. 2, pp. 97–108, 2011.

[22] F. Du and et. al., “Partitioned indexes for entity search over rdf
knowledge bases,” in DASFAA, 2012, pp. 141–155.

[23] A. Lakshman and et. al., “Cassandra: a decentralized structured storage
system,” Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[24] R. Vernica and et. al., “Efficient parallel set-similarity joins using
mapreduce,” in SIGMOD Conference, 2010, pp. 495–506.

[25] G. Karypis and et. al., “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp.
359–392, 1998.

[26] D. Jiang and et. al., “The performance of mapreduce: An in-depth study,”
PVLDB, vol. 3, no. 1, pp. 472–483, 2010.

[27] M. Schmidt and et. al., “Sp 2bench: A sparql performance benchmark,”
in ICDE, 2009, pp. 222–233.

[28] K. Rohloff and et. al., “High-performance, massively scalable distributed
systems using the mapreduce software framework: the shard triple-
store,” in PSI EtA, 2010, p. 4.

[29] T. Neumann and G. Moerkotte, “Characteristic sets: Accurate cardinality
estimation for rdf queries with multiple joins,” in ICDE, 2011, pp. 984–
994.

[30] G. Ladwig and et. al., “Cumulusrdf: Linked data management on nested
key-value stores,” in SSWS Workshop, 2011.

[31] A. Schätzle and et. al., “Pigsparql: Übersetzung von sparql nach pig
latin,” in BTW, 2011, pp. 65–84.

[32] G. Tsatsanifos and et. al., “On enhancing scalability for distributed rdf/s
stores,” in EDBT, 2011, pp. 141–152.

[33] N. Papailiou and et. al., “H2rdf: adaptive query processing on rdf data
in the cloud,” in WWW (Companion Volume), 2012, pp. 397–400.

[34] J. Huang and et. al., “Scalable sparql querying of large rdf graphs,”
PVLDB, vol. 4, no. 11, pp. 1123–1134, 2011.

[35] A. Abouzied and et. al., “Hadoopdb in action: building real world
applications,” in SIGMOD Conference, 2010, pp. 1111–1114.

576

